Scientists figure out how accumulating dust particles become planets

By Brooks Hays, UPI

Scientists have developed a working theory for how small clumps of dust become big balls of debris and begin to form young planets.

In protoplanetary disks, adhesion causes small particles of dust to stick together, just as it causes dust bunnies to form underneath furniture at home. Gravity causes larger objects to coalesce. But until now, scientists weren't exactly sure how small clumps of dust become large orbs of debris. 

New research, published this week in the journal Nature Physics, suggests particles under microgravity conditions develop strong electrical changes causing them to spontaneously stick together.

Models developed by the study's authors showed even particles with like charges congregate because their charges are strong enough to polarize one another, causing the particles to rotate and join together like a magnet. 

"We may have overcome a fundamental obstacle in understanding how planets form," study co-author Troy Shinbrot, a professor of biomedical engineering in at Rutgers University-New Brunswick, said in a news release.

Researchers realized the electrical mechanisms dictating aggregate formation also show up in a chemical manufacturing setup called fluidized bed reactors, which is used to make everything from plastics to pharmaceuticals. When gas is blown through the reactors, fine particles are pushed upward. Static electricity causes them to accumulate and stick to reactor vessel walls, which can cause the manufacturing process to fail.

"Mechanisms for generating aggregates in industrial processes have also been identified and that -- we hope -- may be controlled in future work," Shinbrot said. "Both outcomes hinge on a new understanding that electrical polarization is central to aggregation." 

Additives that conduct electricity in a more productive way could be used to eliminate the problems caused by the use of static electricity.

In follow up studies, scientists hope to test how electrical-induced particle aggregation varies among different types of material.


Note: If you think this story need more information or correction, feel free to comment below your opinion and reaction.

AI,15,Amazon,33,Apple,150,Apps,20,Bitcoin,1,Computers,23,Emoji,1,Entertainment,2,Facebook,105,Gadgets,26,Games,191,Google,97,Huawei,11,Industry,161,Instagram,16,Internet,51,LinkedIn,1,Microsoft Windows,3,Mozilla,1,OS,1,Samsung,67,Science,591,Security,22,Smartphone,107,Social,38,Tech,571,Tesla,6,Twitter,24,VR,6,
Technology News: Scientists figure out how accumulating dust particles become planets
Scientists figure out how accumulating dust particles become planets
Technology News
Loaded All Posts Not found any posts VIEW ALL Read More Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED STEP 1: Share. STEP 2: Click the link you shared to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy